Overview

- Patient selection
- Pre-operative evaluation
- Room set-up & patient prepping
- Necklines
- Patient positioning
- Incision placement
- Cannulation
- Mitral valve exposure & repair
- Atrial closure, de-airing & decannulation
- Video
- Q&A
Patient Selection
MI MVR Patient Selection

All patients with isolated mitral valve disease should be considered

• MV replacement
 – Removes MV repair issues

• MV repair with ring only
 – Less complicated
 – Only deals with single plane of mitral annulus

• MV repair with resection +/- chord replacement (complex repairs)
MI MVR Contraindications

• Relative
 – Tortuous iliac vessels or Grade I–II aortic atheroma (CTA or PE)
 – Moderate or severe peripheral or aortic atherosclerosis
 – History of thoracic trauma (chest adhesions, fractured ribs, etc.)
 – Persistent left SVC (must use antegrade cardioplegia only)

• Absolute
 – Ascending aortic dilatation > 4 cm
 – Severe aortic regurgitation
 – Aneurysm of ascending aorta
 – Aortic stent
 – Grade III–IV aortic atheroma
 – Patients contraindicated to CPB

These contraindications are the viewpoints and opinions of Dr. William Ryan. For Edwards approved contraindications, please see product instructions for use (IFUs.)
Pre-operative Evaluation
Patient History

- Past surgeries
 - Anastomoses
 - Adhesions
 - Pleural space

- Disease entities
 - Coronary disease and peripheral artery disease
Patient Screening

- Detection of vascular disease or anomaly
 - Catheterization history
- Chest x-ray
- Angiogram run-offs
- Cross-sectional imaging of peripheral arterial tree
 - Spiral CT, MRI
Iliac Vessels

Normal vs. Moderate Atherosclerosis
Iliac Vessel Variations
CT Angiography
Room Set-up and Patient Positioning
OR Set-up

- Heart/lung machine
- Anesthesia
- Back table
- Echo
- Hemodynamic monitor
- Video monitor
- C-arm
Hemodynamic Monitor

Set-up
- Right radial/brachial
- Left radial/brachial
- Aortic root
- PAP
- Coronary sinus pressure

Overlap

Left Arm

Right Arm

Aortic Root Pressure
EndoClamp Aortic Catheter
Patient Prepping

- Placement of external defibrillator pads
- Induction of anesthesia
- Endotracheal tube placement
- TEE probe inserted
- Patient positioned and prepped for neckline placement
Intra-operative TEE
TEE Survey Examination

- Evaluate
 - Size and grade of atheromatous plaque
 - Ascending and descending aorta
 - Size of ascending aorta – use of balloon
 - Presence of ASD or PFO
 - Aortic valve for degree of insufficiency
 - Ventricular function
 - Coronary sinus – size and position
Anesthesia Placement of EndoVent Pulmonary Catheter and Coronary Sinus Catheter
EndoVent Pulmonary Catheter

- Assists in decompressing the heart
- Removes blood from the pulmonary artery
- Designed to maintain a dry operative field
Coronary Sinus Catheter

- Occludes coronary sinus
- Delivers retrograde cardioplegia
- Monitors coronary sinus pressure
Patient Positioning
Avoid dislodging of coronary sinus catheter
- Ensure balloon is inflated

Patient placed supine towards right side of table
- Longitudinal roll under right scapula/chest wall
- Achieve 20-30 degree lift

Patient’s legs remain straight – both groins exposed
Patient Positioning

- Right arm is tucked but supported by table
- All lines, stopcocks, and leads are secured
- Right shoulder is supported with bolster
Patient Draping

Elevate breast with incise drape
Incision Placement
Right Thoracotomy

• Evaluate x-rays & CT
 – Heart positioning
 – Intercostal space/point of entry incisions
 • 4th or 5th acceptable

• Incisions
 – Working port
 – Scope
 – CO₂
 – Atrial retractor handle
 – Suture retraction
Working Port
Graduation of Incision

• Advantages
 – Less rib retraction
 – Smaller incision = less tissue damage

• Disadvantages
 – Pain
 – Recovery time

• Retraction devices
 – Soft tissue retractor
 – Rib retractor
• Incision size limitation – atrial retractor blade

• Advantages
 – Soft tissue retractor
 – Pain

• Disadvantages
 – Surgeon comfort level

• Retraction devices
 – Soft tissue retractor
Soft Tissue Retractor
Sizing & Inserting
Rib Retractor Use

- When to use
- Choosing the right configuration for your patient
Working Port
Graduation of Incision

Retraction devices
- Rib retractor

Advantages
- Surgeon comfort level
- Direct visualization
- Large working port

Disadvantages
- Excessive rib retraction
- Pain
- Recovery time
MIVS Instruments

- Narrow, *long-shafted* instruments
 - Ergonomic, in-line handles
 - Optimize tactile feedback and balance
- Lightweight and balanced
 - Designed to reduce fatigue
- Sizes and lengths specifically designed for MIVS procedures
Femoral Venous Cannulation
QuickDraw Venous Cannula

- Low profile, wire-wound design facilitates efficient venous drainage
 - 65 cm length
 - Sizes: 22 Fr and 25 Fr
QuickDraw Venous Cannula

- Cannula kit includes:
 - Connector hub
 - Introducer
 - 22 Fr – 1 piece introducer
 - 25 Fr – 2 piece introducer
 - .038 in x 180 cm j-tip guidewire
 - Percutaneous insertion kit
 - 5 mL syringe
 - 18 gauge insertion needle
 - 3 dilators: 8 Fr, 12 Fr, and 16 Fr
QuickDraw Venous Cannula

- Connector Hub
- Alignment Markers
- 3/8” Barbed Connector
- Clamp Site
- Tapered 2-tiered Introducer
- Depth Markings
- Wire-reinforced Drainage Holes
- QD25 Cannula Body

Introducer

- QD25 Cannula Body
- Depth Markings
- Wire-reinforced Drainage Holes
- Tapered 2-tiered Introducer
QuickDraw Venous Cannula

Important Tips

• Avoid dislodging of coronary sinus catheter
 – Inflate coronary sinus catheter balloon prior to QuickDraw venous cannula placement

• If at any time increased resistance is felt upon insertion of guidewire, dilators, introducer or cannula, investigate cause before continuing
Consider 25 Fr if BSA > 1.6
(if vessel will accommodate cannula size)
Importance of Guidewire

- Prevent cannula from entering:
 - Right atrial appendage
 - PFO into the left atrium
 - Right ventricle

Bicaval TEE view

- Guidewire slightly beyond desired cannula tip position
QuickDraw Venous Cannula
Anticipate Depth

Anticipated cannula insertion depth noted
QuickDraw Venous Cannula
Cannula Insertion

- **Assistant**
 - Grasp guidewire, hold stationary
 - Maintain guidewire position

- **Surgeon**
 - Advance cannula/introducer into position

- **Final placement**
 - 2-3 cm into SVC
QuickDraw Venous Cannula
Cannula Insertion

• Slowly withdraw guidewire into introducer
 – Hold cannula in place
• Remove guidewire/introducer assembly while holding cannula in place
• Clamp cannula at clamp site
• Backbleed to remove air from cannula
• Connect $\frac{3}{8}''$ venous drainage line
 – Need $\frac{3}{8}''$ to $\frac{1}{2}''$ connector if using $\frac{1}{2}''$ venous line
• Remove clamp prior to initiating CPB
• Secure cannula to patient
• Confirm heart decompressed
 – TEE
 – Direct inspection
QuickDraw Venous Cannula
Troubleshooting

• Heart not decompressed
 – Check for volume loss in chest or cannulation site
 • Consider adding volume if necessary
 – Confirm adequate EndoVent catheter flow
 • Check for kinking of EndoVent catheter
 • Aspirate and flush EndoVent catheter
 • Slightly retract catheter and recheck under TEE
 – Consider venous cannula tip occlusion due to excessive suction or malposition
 • Confirm cannula/line not kinked
 • Use TEE to reposition venous cannula
 • Reposition or move atrial retractor

• If venous drainage still inadequate
 – Consider supplemental venous drainage cannula
Femoral Arterial Cannulation
EndoReturn Arterial Cannula

- Wire-wound femoral arterial cannula
 - 21 Fr
 - 23 Fr
- Hemostasis valve
 - Allows for passage of EndoClamp aortic catheter
Cannulation for Smaller Arteries

- 19 Fr arterial cannula
 - For femoral cannulation
 - Avoids high pressure

- 19 Fr introducer sheath
 - Hemostasis valve for passage of EndoClamp aortic catheter
Femoral Arterial Cannula

Sizing

Featured Products (from top to bottom)
- EndoReturn arterial cannula (ER21) with EndoClamp aortic catheter (EC1001) (balloon deflated)
- EndoReturn arterial cannula (ER23) with EndoClamp aortic catheter (EC1001) (balloon deflated)
- Edwards arterial cannula (AC19)
- EndoReturn arterial cannula (ER21)
- EndoReturn arterial cannula (ER23)

* Mean value derived from *in vitro* testing performed with water at 21°C. The actual pressure gradients encountered in a clinical situation may vary from those shown, depending on perfusion techniques.
Femoral Arterial Cannula Insertion

- Prep cannula per IFU
- Guidewire
 - Verify with TEE
 - Descending aorta
- Maintain guidewire position
- Advance cannula/introducer into femoral artery
Femoral Arterial Cannula Insertion

- Properly position cannula
 - Avoid ischemia
- Secure cannula / artery
- Remove guidewire
- Withdraw introducer
 - Clear of clamp site
- Clamp cannula
• Remove introducer and connector hub
• Vent and tighten hemostasis valve
• Connect arterial tubing with EndoReturn cannula
• Remove tubing clamp
• Secure cannula to patient
EndoReturn Arterial Cannula
Final Placement

- Leave cannula exposed
- Hemostasis valve pointing up
Femoral Arterial Cannula
Important Insertion Tips

- Consider cannulating on opposite side of recent catheterization
- Do not advance if resistance is felt
 - Inability to easily advance the guidewire or cannula may indicate vascular disease or injury
 - Examine position with TEE
- Transfuse 100 mL test volume through cannula
- Observe pulsatile pressure similar to systemic pressure
 - High arterial line pressures may indicate a dissection of artery and/or placement of cannula in false lumen - immediately discontinue femoral bypass
Femoral Arterial Cannula Troubleshooting

- Hemostasis valve excessive backbleeding
 - Ensure valve closed

- Air in the CBP system
 - Purge air from cannula by backbleeding through the hemostasis valve
• Arterial line or oxygenator outlet pressure in excess of 350 mmHg
 – Attempt gentle rotation or repositioning of cannula
 – Decrease pump flow rates
 – Check for kinking of cannula and arterial line
 – Always reduce arterial inflow rate when advancing or withdrawing the EndoClamp aortic catheter
 – Pull out slack in catheter line
 – Consider repositioning of catheter
 – Consider bi-femoral or aortic cannulation with IS19
Mitral Valve Exposure
Exposure and Visualization

- Pericardium incision
 - Lengthwise incision 1 cm anterior to phrenic nerve
- Stay sutures – pericardium
Establish Cardiopulmonary Bypass
EndoClamp Aortic Catheter

- Occludes ascending aorta
- Delivers antegrade cardioplegia
- Vents aortic root
- Monitors aortic root and balloon pressures
- Designed for femoral approach

EndoClamp Aortic Catheter

100 cm length
Opening of Left Atrium

- **Incision**
 - Posterior to atrial groove
 - Anterior to right pulmonary veins
- **Extend incision with tissue scissors**
Exposure of Mitral Valve

- Atrial retractor
 - Incision
 - Insert atrial retractor handle
 - Fix holder to blade
- Evaluate mitral valve pathology
Mitral Valve Repair or Replacement

Repair

Sizing
Atrial Closure and De-airing
Coming Off Pump

- De-airing per institution protocol
 - CO₂
 - Trendelenberg
 - Increase perfusion flow
 - Deflated EndoClamp aortic catheter is maintained in ascending aorta
- Anesthesia verifies EndoVent and EndoPlege catheters move freely
- Placement of temporary pacing wire before balloon is deflated
- Perfusion vigorously vents the aortic root
- Ventilation resumes
- Come off pump
Decannulation
Decannulation

- Administer protamine
- Remove EndoVent and EndoPlege catheters
- Remove arterial and venous catheters per institution protocol
- Pain management considerations
 - Follow institution protocol
Clinical Outcomes
Clinical Outcomes

Mitral Valve Surgery: Comparison of Outcomes in Matched Sternotomy and Port Access Groups: The Updated Dallas Experience (William H. Ryan, et al.)

<table>
<thead>
<tr>
<th></th>
<th>Sternotomy</th>
<th>Minimally Invasive</th>
<th>p Value</th>
<th>Sternotomy</th>
<th>Minimally Invasive</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (days)</td>
<td>7.4 ± 6.7</td>
<td>5.8 ± 7.1</td>
<td><0.001</td>
<td>10.0 ± 7.6</td>
<td>8.4 ± 8.3</td>
<td>0.013</td>
</tr>
<tr>
<td>Operative Mortality</td>
<td>0.6% (1)</td>
<td>0.6% (1)</td>
<td>1.00</td>
<td>10.3% (4)</td>
<td>0.0% (0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Return to OR for Re-op Bleed</td>
<td>7.7% (12)</td>
<td>1.8% (3)</td>
<td>0.01</td>
<td>14.3% (5)</td>
<td>2.6% (1)</td>
<td>0.10</td>
</tr>
<tr>
<td>Vent Prolonged (> 24 hours)</td>
<td>11.2% (18)</td>
<td>4.8% (8)</td>
<td>0.03</td>
<td>22.2% (8)</td>
<td>13.5% (5)</td>
<td>0.33</td>
</tr>
<tr>
<td>Mean Vent Hours</td>
<td>23 ± 80</td>
<td>18 ± 127</td>
<td><0.001</td>
<td>21 ± 41</td>
<td>16 ± 42</td>
<td>0.074</td>
</tr>
<tr>
<td>Readmit within 30 days</td>
<td>6.5% (10)</td>
<td>3.3% (5)</td>
<td>0.19</td>
<td>2.8% (1)</td>
<td>6.1% (2)</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Minimal Incision MVR
Additional Resources
Time Saving Practices

- **Necklines**
 - Place neck catheter introducers prior to induction in holding area
 - Prepare EndoVent pulmonary catheter and coronary sinus catheter and attach contamination guards

- **Simultaneous chest exposure and groin preparation**

- **Assistant available during**:
 - Aortic occlusion period
 - Exposure and suture handling

- **Simultaneous groin closure and chest hemostasis/closure**
Resources

• thruportmivs.com
 – Webinars
 – Surgical videos
 – Computer based training modules

• Complete support for you and your team
 – Comprehensive professional education
 • Learn techniques from leading MIVS surgeons
 • Team training – live surgical case observation
 – Clinical and sales specialists
 • Provide support for you and your surgical team
Video
Q & A
For professional use. CAUTION: Federal (United States) law restricts this device to sale by or on the order of a physician. See instructions for use for full prescribing information, including indications, contraindications, warnings, precautions and adverse events.

The surgical technique presented herein is the technique used by the respective medical professionals. Edwards Lifesciences does not endorse any particular surgical technique.

Edwards Lifesciences wishes to disclose that some speakers, instructors or panel members may receive compensation and reimbursement of reasonable travel expenses from Edwards Lifesciences for their services in full compliance with all applicable rules and regulations, including the AdvaMed Code of Ethics.

Edwards, Edwards Lifesciences, the stylized E logo, Carpentier-Edwards Physio II, EndoClamp, EndoPlege, EndoReturn, EndoVent, QuickDraw, and ThruPort are trademarks or service marks of Edwards Lifesciences Corporation. All other trademarks are the property of their respective owners.

© 2011 Edwards Lifesciences Corporation. All rights reserved. AR06349