Using Fluid Optimization to Improve Hemodynamics

FloTrac Sensor

Too Wet or Too Dry?
Clinicians understand the vital role of fluid balance in critically ill patients: Too much fluid can result in edema, respiratory insufficiency or acute coronary syndrome, while too little fluid can place a patient at risk for circulatory disturbances, shock or pre-renal failure. Some patients who would benefit from fluid receive too much inotropic support, which can result in tachycardia or other complications. In addition, the ongoing management of these patients is often handled by less experienced members of the critical care team who do not have adequate understanding of fluid optimization.

Insight into the Frank-Starling Curve
Successful fluid optimization has been shown in numerous clinical studies to lead to improved patient outcomes, including reduced morbidity and shorter hospital stays. The studies are typically based on the physiological principles outlined by the Frank-Starling curve, which states that an increase in preload or volume will lead to cardiac flow-related improvement (e.g., better stroke volume) up to a certain point, after which the “law of diminishing returns” applies. With compelling evidence that fluid optimization leads to better outcomes, the challenge then becomes: what is the best method for assessing fluid balance?

The FloTrac System Enables Precise Management to Fluid Optimization
The FloTrac system equips clinicians with a set of tools to assess both dimensions of the Frank-Starling curve. First, the algorithm of the FloTrac system utilizes advanced waveform processing to adjust dynamically for vascular tone (resistance and compliance) in addition to patient specific variables (age, gender, body surface area, etc.) in order to calculate the key flow related parameters stroke volume and cardiac output. The result is an enhanced ability to determine the adequacy of cardiac flow, which comprises the Y-axis of the Frank-Starling Curve. Second, the FloTrac system measures preload responsiveness for the X-axis of the Frank-Starling curve through one of three distinct, practical methods:

- Stroke Volume Variation (SVV): For control-ventilated patients, SVV has been proven to be a highly sensitive and specific indicator for preload responsiveness. As a dynamic parameter, SVV has the advantage of predicting whether a patient will benefit from volume before the fluid is given.

- Passive Leg Raising (PLR): In situations where it is not possible to use SVV (i.e., during arrhythmias, when patients are not on control-mode of ventilation, or in patients at risk of complications from fluid loading), simply raising the legs has been proven clinically to act like a “self volume challenge” to indicate the patient’s status on the Frank-Starling curve. If the patient is fluid-responsive, SV will increase substantially.

- SV Fluid Challenge: In the rare case when neither SVV nor PLR is feasible, the FloTrac system provides a highly efficient method for assessing fluid responsiveness via a standard fluid challenge. The administration of a small volume of fluid (e.g., 250-500 mL) and observance of the corresponding change in SV and/or CO can indicate whether further volume will improve cardiac performance.

For further information on the FloTrac sensor please visit Edwards.com/FloTrac
Helping to advance the care of the critically ill for 40 years, Edwards Lifesciences seeks to provide the valuable information you need, the moment you need it. Through continuing collaboration with you, ongoing education and our never-ending quest for advancement, our goal is to deliver clarity in every moment.

REFERENCES

Any quotes used in this material are taken from independent thirdparty publications and are not intended to imply that such third party reviewed or endorsed any of the products of Edwards Lifesciences.

For professional use. CAUTION: Federal (United States) law restricts this device to sale by or on the order of a physician. See instructions for use for full prescribing information, including indications, contraindications, warnings, precautions, and adverse events.

Edwards, Edwards Lifesciences, the stylized E logo, and FloTrac are trademarks of Edwards Lifesciences Corporation.

© 2011 Edwards Lifesciences Corporation. All rights reserved. AR06218