Evidence-based, Perioperative Goal-Directed Therapy (PGDT) protocols

Note: This protocol summary is designed to help inform clinicians of key published protocols used to guide hemodynamic monitoring in high-risk surgery. It is not intended to recommend a specific protocol, but to guide hemodynamic optimization through Perioperative Goal-Directed Therapy protocols that have been shown to reduce the number of peri- and postoperative complications, and improve patient outcomes.1-3 These protocols represent individual strategies to help physicians either titrate or tailor fluid therapy in an individual patient or clinical situation. Since every case is different, physicians must weigh the risks and benefits of initiating any specific protocol.

Please refer to Edwards Critical Care Education at Edwards.com/ccEducation for updates and additional information.

Issue Date: March 2013

Considering a protocol

The following algorithm is provided to help you select the most appropriate Perioperative Goal-Directed Therapy (PGDT) protocol for your patient. Your selection deserves careful consideration.

*At risk because of comorbidities or the surgical procedure itself.

†Limitations to the use of SVV: Spontaneous breathing, tidal volume <7 ml/kg, open chest, atrial fibrillation, right ventricular failure, and laproscopic surgery.

Abbreviations: BP: Blood Pressure; CVP: Central Venous Pressure; HR: Heart Rate; SV: Stroke Volume; SVV: Stroke Volume Variation.
Evidence-based, Perioperative Goal-Directed Therapy (PGDT) protocols

Note: This protocol summary is designed to help inform clinicians of key published protocols used to guide hemodynamic monitoring in high-risk surgery. It is not intended to recommend a specific protocol, but to guide hemodynamic optimization through Perioperative Goal-Directed Therapy protocols that have been shown to reduce the number of peri- and postoperative complications, and improve patient outcomes. These protocols represent individual strategies to help physicians either titrate or tailor fluid therapy in an individual patient or clinical situation. Since every case is different, physicians must weigh the risks and benefits of initiating any specific protocol.

Please refer to Edwards Critical Care Education at Edwards.com/ccEducation for updates and additional information.

Issue Date: March 2013

Considering a protocol

The following algorithm is provided to help you select the most appropriate Perioperative Goal-Directed Therapy (PGDT) protocol for your patient. Your selection deserves careful consideration.

*At risk because of comorbidities or the surgical procedure itself.

†Limitations to the use of SVV: Spontaneous breathing, tidal volume <7 ml/kg, open chest, atrial fibrillation, right ventricular failure, and laparoscopic surgery.

Abbreviations: BP: Blood Pressure; CVP: Central Venous Pressure; HR: Heart Rate; SV: Stroke Volume; SSV: Stroke Volume Variation.
OVERVIEW

Study Design
Randomized controlled trial

Patient Population
Undergoing elective abdominal surgery >2 h with expected blood loss >1000 ml

Inclusion Criteria
One or more of the following: Ischemic heart disease or severe heart dysfunction, moderate to severe chronic obstructive pulmonary disease, aged 70+, ASA III or more

Target Parameters
Central Venous Pressure, Stroke Volume Variation, Cardiac Index

Intervention
Fluid (Colloid), Dobutamine

Primary Outcomes
Decrease in 30-day postoperative complications (56%), decrease in hospital length of stay (10%)

Abbreviations:
- CI: Cardiac Index
- CVP: Central Venous Pressure
- SVV: Stroke Volume Variation
OVERVIEW

Study Design
Randomized controlled trial

Patient Population
Undergoing elective abdominal surgery >2 h with expected blood loss >1000 ml

Inclusion Criteria
One or more of the following: Ischemic heart disease or severe heart dysfunction, moderate to severe chronic obstructive pulmonary disease, aged 70+, ASA III or more

Target Parameters
Central Venous Pressure, Stroke Volume Variation, Cardiac Index

Intervention
Fluid (Colloid), Dobutamine

Primary Outcomes
Decrease in 30-day postoperative complications (56%), decrease in hospital length of stay (10%)

Abbreviations:
CI: Cardiac Index; CVP: Central Venous Pressure; SVV: Stroke Volume Variation.
OVERVIEW

Study Design
Randomized controlled trial

Patient Population
Undergoing elective total hip replacement under regional anesthesia

Inclusion Criteria
ASA II

Target Parameters
Stroke Volume, Oxygen Delivery

Intervention
Fluid (Colloid), Dobutamine

Primary Outcomes
Decrease in postoperative complications (20%)

Abbreviations:
- **DO₂I**: Oxygen Delivery Index
- **Hb**: Hemoglobin
- **HES**: Hydroxyethyl Starch
- **HR**: Heart Rate
- **MAP**: Mean Arterial Pressure
- **SaO₂**: Oxygen Saturation
- **SV**: Stroke Volume

End Protocol

Resuscitation to achieve a DO₂I value of 600 is presented as a goal and not intended to be a hard target. This protocol is intended as guidance, and healthcare professionals should use sound clinical judgment and individualize therapy to each specific patient care situation.

Randomized controlled trial

Undergoing elective total hip replacement under regional anesthesia

ASA II

Stroke Volume, Oxygen Delivery

Fluid (Colloid), Dobutamine

Decrease in postoperative complications (20%)

Abbreviations: DO$_2$I: Oxygen Delivery Index; Hb: Hemoglobin; HES: Hydroxyethyl Starch; HR: Heart Rate; MAP: Mean Arterial Pressure; SaO$_2$: Oxygen Saturation; SV: Stroke Volume.

RESUSCITATION TO ACHIEVE A DO$_2$I VALUE OF 600 IS PRESENTED AS A GOAL AND NOT INTENDED TO BE A HARD TARGET. THIS PROTOCOL IS INTENDED AS GUIDANCE, AND HEALTHCARE PROFESSIONALS SHOULD USE SOUND CLINICAL JUDGMENT AND INDIVIDUALIZE THERAPY TO EACH SPECIFIC PATIENT CARE SITUATION.

Based upon Shoemaker3 protocol.
OVERVIEW

- **Study Design**: Quality improvement program (before-after comparison)
- **Patient Population**: Undergoing emergency and elective abdominal, orthopedic, gynecologic, urologic, and vascular surgery
- **Inclusion Criteria**: Three cohorts of patients aged ≤60, 61-71, and ≥71 years with ASA >1
- **Target Parameters**: Stroke Volume
- **Intervention**: Fluid
- **Primary Outcomes**: 3.7-day decrease in hospital length of stay (25%)

Abbreviation: SV: Stroke Volume.
OVERVIEW

Study Design Quality improvement program (before-after comparison)

Patient Population Undergoing emergency and elective abdominal, orthopedic, gynecologic, urologic, and vascular surgery

Inclusion Criteria Three cohorts of patients aged ≤60, 61-71, and ≥71 years with ASA > I

Target Parameters Stroke Volume

Intervention Fluid

Primary Outcomes 3.7-day decrease in hospital length of stay (25%)

Abbreviation: SV: Stroke Volume.
OVERVIEW

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Randomized controlled trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Population</td>
<td>Undergoing radical gastrectomy, colon cancer resection, rectal cancer, and Whipple surgery</td>
</tr>
<tr>
<td>Inclusion Criteria</td>
<td>ASA I or ASA II</td>
</tr>
<tr>
<td>Target Parameters</td>
<td>Stroke Volume Variation</td>
</tr>
<tr>
<td>Intervention</td>
<td>Fluid</td>
</tr>
<tr>
<td>Primary Outcomes</td>
<td>Faster recovery time to normal diet (16%), decrease in hospital length of stay (19%)</td>
</tr>
</tbody>
</table>

Ping Protocol

Abbreviations: BP: Blood Pressure; HR: Heart Rate; SVV: Stroke Volume Variation.
OVERVIEW

Study Design: Randomized controlled trial

Patient Population: Undergoing radical gastrectomy, colon cancer resection, rectal cancer, and Whipple surgery

Inclusion Criteria: ASA I or ASA II

Target Parameters: Stroke Volume Variation

Intervention: Fluid

Primary Outcomes: Faster recovery time to normal diet (16%), decrease in hospital length of stay (19%)

Abbreviations: BP: Blood Pressure; HR: Heart Rate; SVV: Stroke Volume Variation.
OVERVIEW

Study Design
Randomized, single-blinded controlled trial

Patient Population
Undergoing major abdominal surgery, urologic, gastrointestinal or gynecologic cancer resection, and Whipple surgery

Inclusion Criteria
P-POSSUM mean predicted mortality rate of 1.4*

Target Parameters
Stroke Volume Variation

Intervention
Fluid (Colloid)

Primary Outcomes
Faster return of GI function (3 vs 4 days), faster return of PO intake (4 vs 5 days), and a 2.5-day decrease in hospital length of stay (33%)

*No differences other than age were statistically significant. P-POSSUM scores predicted mortality and showed no difference between the groups.

Abbreviations:
Ramsingh Protocol

OVERVIEW

Study Design
Randomized, single-blinded controlled trial

Patient Population
Undergoing major abdominal surgery, urologic, gastrointestinal or gynecologic cancer resection, and Whipple surgery

Inclusion Criteria
P-POSSUM mean predicted mortality rate of 1.4*

Target Parameters
Stroke Volume Variation

Intervention
Fluid (Colloid)

Primary Outcomes
Faster return of GI function (3 vs 4 days), faster return of PO intake (4 vs 5 days), and a 2.5-day decrease in hospital length of stay (33%)

*No differences other than age were statistically significant. P-POSSUM scores predicted mortality and showed no difference between the groups.

Abbreviations:
- **ABGs:** Arterial Blood Gases
- **CO:** Cardiac Output
- **P-POSSUM:** Portsmouth Physiologic and Operative Severity Score for the Enumeration of Mortality and Morbidity Score
- **PRBCs:** Packed Red Blood Cells
- **SVV:** Stroke Volume Variation
Donati Protocol

OVERVIEW

Study Design
- Multicenter randomized controlled trial

Patient Population
- Undergoing elective abdominal extensive surgery
- or abdominal aortic surgery

Inclusion Criteria
- ASA II

Target Parameters
- Central Venous Pressure,
- Oxygen Extraction Ratio

Intervention
- Fluid (Colloid), Dobutamine

Primary Outcomes
- Decrease in postoperative complications (60%),
- decrease in hospital length of stay (16%)

Abbreviations:
- **CVP:** Central Venous Pressure;
- **Hb:** Hemoglobin;
- **MAP:** Mean Arterial Pressure;
- **O₂ER:** Oxygen Extraction Ratio;
- **SaO₂:** Oxygen Saturation;
- **ScvO₂:** Central Venous Oxygen Saturation.

'O₂ER is estimated based on use of ScvO₂.'
OVERVIEW

Study Design
Multicenter randomized controlled trial

Patient Population
Undergoing elective abdominal extensive surgery or abdominal aortic surgery

Inclusion Criteria
ASA II

Target Parameters
Central Venous Pressure, Oxygen Extraction Ratio

Intervention
Fluid (Colloid), Dobutamine

Primary Outcomes
Decrease in postoperative complications (60%), decrease in hospital length of stay (16%)

Abbreviations:
- **CVP**: Central Venous Pressure
- **Hb**: Hemoglobin
- **MAP**: Mean Arterial Pressure
- **O_{2}ER**: Oxygen Extraction Ratio
- **SaO_{2}**: Oxygen Saturation
- **ScvO_{2}**: Central Venous Oxygen Saturation

Modified Donati Protocol:

'O_{2}ER' is estimated based on use of ScvO_{2}.

END PROTOCOL
References

References

Edwards provides this information for your convenience. It is not intended to describe, recommend, or suggest any use, feature, or benefit of Edwards products and does not constitute any medical advice. The information provided is not meant to be a substitute for professional advice and is not to be used alone for medical diagnosis or medical treatment. Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. In view of the possibility of human error or changes in medical sciences, Edwards cannot warrant that the information is in every respect accurate or complete, and Edwards thus cannot be responsible for any errors or omissions or the results obtained from the use of such information. Extensive effort has been exerted to make this information as accurate as possible. However, the accuracy and completeness of the information provided cannot be guaranteed. This is to be used as a guide only, and healthcare professionals should use sound clinical judgment and individualize therapy to each specific patient care situation. Edwards makes no claims whatsoever, expressed or implied, about the authenticity, accuracy, reliability, completeness, or timeliness of the material, calculations, software, text, graphics, or other information given.
Advancing the care of the critically ill
through science-based education since 1971.