TECHNOLOGY OVERVIEW

1. Headley JM

2. Manecke GR

EVOLVING METHOD

 Assessment of cardiac output changes using a modified FloTrac/Vigileo algorithm in cardiac surgery patients. Critical Care Medicine 2009; 13:R32*

FLUID OPTIMIZATION

5. Biais M, Bernard O, Ha JC, degryse C, Sztark F
 Abilities of pulse pressure variations and stroke volume variations to predict fluid responsiveness in prone position during scoliosis surgery. British Journal of Anaesthesia 2010; 104:407-413

 Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. European Journal of Anaesthesiology 2010; 27:555-561

7. Kungys G, Rose DD, Fleming NW

9. Monge Garcia MI, Gil Cano A, Diaz Monrove JC
 Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Critical Care Medicine 2009; 13:R142

 Uncalibrated stroke volume variations are able to predict the hemodynamic effects of positive end-expiratory pressure in patients with acute lung injury or acute respiratory distress syndrome after liver transplantation. Anesthesiology 2009; 111:855-862

 A comparison of stroke volume variation measured by Vigileo FloTrac system and aortic Doppler echocardiography. Anesthesia & Analgesia 2009; 109:466-469

 Ability of stroke volume variations obtained with Vigileo/FloTrac to monitor fluid responsiveness in mechanically ventilated patients. Anesthesia & Analgesia 2009; 108:513-517

 Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac™ and PICCOplus™ system. Critical Care Medicine 2008; 12:R82

OUTCOME

 Outcome impact of goal directed fluid therapy during high risk abdominal surgery in low to moderate risk patients: a randomized controlled trial. The Journal of Clinical Monitoring and Computing (online). 2012

16. Wang Ping, Wang Hong-Wei and Zhong Tai-Di
 Effect of Stroke Volume Variability-Guided Intraoperative Fluid Restriction on Gastrointestinal Functional Recovery. Hepato-Gastroenterology. 2012;59(120)

17. Maurizio Cecconi, Nicola Fasano, Nicola Langiano, Michele Divella, Maria G Costa, Andrew Rhodes, Giorgio Della Rocca

19. Qiang Fu, Weidong Mi, Hong Zhang

20. Sumit Vasdev, Sandeep Chauhan, Minati Choudhury, Millind P. Hote, Madhur Malik, Usha Kiran
Arterial pressure waveform derived cardiac output FloTrac/Vigileo system (third generation software): comparison of two monitoring sites with the thermodilution cardiac output. The Journal of Clinical Monitoring and Computing (online). 2012;26(2):115-20

22. Scheeren T, Wiesenack C

Comparison of Simultaneous Estimation of Cardiac Output by Four Techniques in Patients Undergoing Offpump Coronary Artery Bypass. Annals of Cardiac Anaesthesia 2007; 10:121–126

24. de Waal E, Kalkman C, Rex S, Buhre W
Validation of a new arterial pulse contour-based cardiac output device. Critical Care Medicine 2007; 35:1904-1909

25. Mehta Y, Chand RK, Sawhney R, Bhise M, Singh A, Trehan N

28. Breukers R-MBGE, Sepehrkouy S, Spiegelenberg SR, Groeneveld ABJ

29. Staier K, Wiesenack C, Günk L, Keyl C

Impact of pacing modality and biventricular pacing on cardiac output and coronary conduit flow in the postcardiotomy patient. Interactive CardioVascular and Thoracic Surgery 2008; 7:805-808

31. Bridges E

Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Critical Care Medicine 2009; 13:R195*

33. Hofer CK, Button D, Weibel L, Genoni M, Zollinger A
Uncalibrated radial and femoral arterial pressure waveform analysis for continuous cardiac output measurement: an evaluation in cardiac surgery patients. Journal of Cardiothoracic and Vascular Anesthesia 2009; 24:257-264*

* This study assesses 2nd Generation FloTrac Algorithm
** This study assesses 3rd Generation FloTrac Algorithm